Received 20 September 2006 Accepted 22 September 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Liu, Hong-Jun Zhu,* Wei Zheng, Rui Liu and Shui-Ping Deng

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.057 wR factor = 0.169 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,5-Dibenzoylterephthalic acid acetic acid disolvate

The asymmetric unit of the title compound, $C_{22}H_{14}O_{6}$. $2C_2H_4O_2$, contains one half-molecule of 2,5-dibenzoylterephthalic acid (DBTA) and one acetic acid molecule. The DBTA molecule is centrosymmetric. The acetic acid molecules are linked to DBTA by strong $O-H \cdots O$ hydrogen bonds, which may be effective in the stabilization of the crystal structure.

Comment

2,5-Dibenzoylterephthalic acid (DBTA), and its isomer 4,6dibenzoylisophthalic acid (DBIA), can be utilized to synthesize organic semiconductors and conjugated polymers (Tonzola *et al.*, 2003), which are of wide current interest for applications in electronic and optoelectronic devices, including light-emitting diodes (Kolosov *et al.*, 2002), thin film transistors and photovoltaic cells (Antoniadis *et al.*, 1994). We report here the crystal structure of the title compound, (I).

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (A) -x, 1 - y, 1 - z.]

© 2006 International Union of Crystallography All rights reserved In the molecules of compound (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The asymmetric unit contains one half-molecule of DBTA and one acetic acid molecule. The DBTA molecule is centrosymmetric.

Rings A (C1–C6) and B (C9–C11/C9A–C11A) [symmetry code: (A) -x, 1 - y, 1 - z] are, of course, planar. The dihedral angle between them is 85.1 (1)°.

As can be seen from the packing diagram (Fig. 2), the acetic acid molecules are linked to DBTA by strong $O-H\cdots O$ hydrogen bonds (Table 1), which may be effective in the stabilization of the crystal structure. Dipole–dipole and van der Waals interactions are also effective in the molecular packing.

Experimental

DBTA was prepared by the literature method of Liu *et al.* (2006). Single crystals were obtained by dissolving DBTA (1.5 g) in boiling acetic acid (100 ml) and then allowing the solvent to evaporate slowly at room temperature for about 7 d.

Crystal data

$\begin{array}{l} C_{22}H_{14}O_6{\cdot}2C_2H_4O_2\\ M_r = 494.44\\ \text{Triclinic, P}\\ a = 5.6380~(11)~\text{\AA}\\ b = 9.889~(2)~\text{\AA}\\ c = 11.387~(2)~\text{\AA}\\ \alpha = 79.60~(3)^\circ\\ \beta = 78.92~(3)^\circ\\ \gamma = 83.76~(3)^\circ \end{array}$	$V = 611.0 (2) \text{ Å}^{3}$ Z = 1 $D_{x} = 1.344 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 298 (2) K Block, colourless $0.40 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.959, T_{\max} = 0.979$ 2388 measured reflections	2388 independent reflections 1453 reflections with $I > 2\sigma(I)$ $\theta_{max} = 26.0^{\circ}$ 3 standard reflections frequency: 120 min intensity decay: none
Refinement	

Refinement on F^2	H-atom parameters constrained		
$R[F^2 > 2\sigma(F^2)] = 0.057$	$w = 1/[\sigma^2 (F_0^2) + (0.09P)^2]$		
$wR(F^2) = 0.169$	where $P = (F_0^2 + 2F_c^2)/3$		
S = 0.98	$(\Delta/\sigma)_{\rm max} < 0.001$		
2388 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$		
164 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$		

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O2 - H2B \cdots O4 \\ O5 - H5B \cdots O3 \end{array}$	0.82	1.82	2.633 (3)	170
	0.82	1.86	2.677 (3)	171

H atoms were positioned geometrically, with O-H = 0.82 Å and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and were constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Centre for Testing and Analysis, Nanjing University, for support.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. & Stolka, M. (1994). Synth. Met. 62, 265–271.
- Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Enraf-Nonius (1985). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. & Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945–9954.

- Liu, S., Ji, J.-X., Wang, D.-D. & Zhu, H.-J. (2006). Acta Cryst. E62, o1387-01389.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548–13558.